Captain Picard may be a little confused.

Today, researchers with the LHCb experiment at CERN announced the confirmation of a weird object that first appeared in detectors in 2008. This object is made up of four quarks, where other particles are made of two or three quarks (or zero, in the case of electrons, neutrinos, and the like). But what sort of beast is this? As is often the case, more work is needed before we can say for ccertain.

With that much data, physicists were able to determine the composition of the Z(4430)-: it consists of a charm quark, a charm anti-quark, a down quark, and an up antiquark. The “4430″ part of the name indicates its mass: 4,430 million electron-volts, which a little more than four times the mass of a proton (938 million electron volts). The combination of quarks gives the Z(4430)- a negative electric charge, hence the “-” in the label. The particle is highly unstable, so none of them are expected to be seen in nature. [Read more...]

Four quarks for Muster Mark!

The particles of the the Standard Model and its simplest supersymmetric version. [Credit:  Pauline Gagnon]

The particles of the the Standard Model and its simplest supersymmetric version. [Credit:
Pauline Gagnon]

Symmetry and elegance have proven to be a very successful way to think about the physical Universe. Arguably the greatest successes in 20th century particle physics came from translating mathematical symmetries into predictions about the results of particle collisions. However, not every symmetry thus far has led to a successful theory, and one of the frustrations is that a natural consequence of a symmetry in the theory of relativity hasn’t produced the predicted particles. The currently unfulfilled theory is known as supersymmetry (or SUSY), and so far none of its predictions have borne out experimentally.

However, a completely analogous version of SUSY could exist in certain exotic superconductors. This is not built out of elementary particles, but out of interactions between electrons and atoms, giving rise to a set of particle-like quantum excitations known as quasiparticles.

The new paper discussed the idea of emergent SUSY-like behavior in topological superconductors. In these systems (described in more detail in the sidebar story), the interior of the material conducts electricity without resistance, but the outside is an ordinary conductor. The authors argued that experimentally observed magnetic behavior on the conducting surface could be interpreted super symmetrically. It also exhibits a breaking of SUSY due to the fundamental difference in interior and surface behavior of the system.

In this view, the magnetic excitations (acting like bosons) on the surface are SUSY partners with the topological superconductor quasiparticles, which are fermions. [read more...]

Supersymmetry in…superconductors?

The BICEP2 telescope (foreground) with the South Pole Telescope (SPT) behind. [Credit: Steffen Richter (Harvard University)]

The BICEP2 telescope (foreground) with the South Pole Telescope (SPT) behind. [Credit: Steffen Richter (Harvard University)]

Today was an exciting and stimulating day: the BICEP2 collaboration announced the first measurement of the cosmic microwave background that might tell us whether or not inflation happened. Inflation is the hypothetical rapid expansion of the Universe during its first instants, which explains a lot about why the cosmos appears the way it does. However, data on inflation itself, as opposed to its side-effects, are hard to come by. This new observation could help resolve that…assuming we can figure out why some of its aspects don’t agree with prior observations.

While they do not constitute a direct detection of either primordial gravitational waves (the distortions causing the light polarization) or inflation, the BICEP2 results could provide the best evidence for both that could not be easily explained away by other theories. This observation cannot be the end of the story, however. The measurement of polarization is significantly larger that what is seen in the results of prior observations in a way that cannot be immediately dismissed. Whether the problems are with the interpretation and analysis of the BICEP2 data, or if something more subtle is at work, remains to be seen. [Read more....]

New data offer a peek into the Universe’s first instants

A visual representation of the "axis of evil": the  strange alignment of temperature fluctuations on the largest scales on the sky. [Credit: Craig Copi]

A visual representation of the “axis of evil”: the strange alignment of temperature fluctuations on the largest scales on the sky. [Credit: Craig Copi]

On the largest scales — far bigger than any galaxy or galaxy cluster — the Universe is remarkably smooth and regular. Tiny irregularities in the early cosmos are what gave rise to all the structures we see today, including us, but there’s another irregularity covering the whole sky. The Universe appears to be ever-so-slightly lopsided, an anomaly facetiously known as the “axis of evil”. Cosmologists are concerned with trying to understand whether the anomaly is a significant challenge to our understanding of some of the laws of physics, or whether it can be understood either as a new astronomical source or a random fluke based on the fact that the whole cosmos is much larger than our observable Universe.

In my latest feature article at Ars Technica, I explored why the “axis of evil” could be a big deal and how some physicists are trying to understand it.

The lopsidedness is real, but cosmologists are divided over whether it reveals anything meaningful about the fundamental laws of physics. The fluctuations are sufficiently small that they could arise from random chance. We have just one observable Universe, but nobody sensible believes we can see all of it. With a sufficiently large cosmos beyond the reach of our telescopes, the rest of the Universe may balance the oddity that we can see, making it a minor, local variation.

However, if the asymmetry can’t be explained away so simply, it could indicate that some new physical mechanisms were at work in the early history of the Universe. [Read more....]

The mystery of the lopsided Universe

Astronomers measured the rotation of a black hole from halfway across the Universe.

What, I need to say more?

Astronomers have now used gravitational magnification to measure the rotation rate of a supermassive black hole in a very distant galaxy. From four separate images of the same black hole, R.C. Reis, M.T. Reynolds, J.M. Miller, and D.J. Walton found it was spinning nearly as fast as possible. That likely means it was spun up by a small number of mergers with other black holes rather than a gradual increase from eating smaller amounts of mass.

This marks the first measurement of black hole rotation outside the local Universe…. [Read more]

Measuring black hole rotation halfway across the Universe

O, what entangled photons we weave!

(OK, it doesn’t scan. So sue me.) Quantum entanglement is a challenging topic, and one which has tripped up a lot of people (including many physicists!) over the decades. In brief, entanglement involves two (or more) particles constituting a single system: measurement on one particle instantly determines the result of similar measurements on the second, no matter how far they are separated in space. While no information is transferred in this process, it’s still at odds with our everyday experience with how the world should work. I updated my earlier explanation of entanglement, which hopefully can help clear up some of the confusion.

Recent work either assumes entanglement is real and probes some of the more interesting implications, or tests some mathematical relations known as Bell’s inequalities. The latter are aimed at quantifying the difference between the predictions of quantum physics and certain alternative models. In that spirit, a group of researchers proposed using light from quasars to randomize the measurement apparatus in entanglement experiments, to eliminate the tiny possibility of a weird loophole in quantum theory.

If a detector has some correlation with the hidden variables of the particles being measured, then the two detectors don’t act independently. That’s true even if only a very tiny amount of information is exchanged less than a millisecond before measurements take place. The interaction would create the illusion that the particles are entangled in a quantum sense, when in fact they are influencing the detectors, which in turn dictate what measurements are being taken. This is known as the “detector settings independence” loophole—or somewhat facetiously as the “free will” loophole, since it implies the human experimenter has little or no choice over the detector settings. [Read more...]

Final note: this is probably the first paper I’ve covered that involves both my undergraduate research focus (quantum measurement) and my PhD work (cosmology), albeit in a much different way than both.

The Cassiopeia A supernova remnant. [Credit: NASA/CXC/SAO]

The Cassiopeia A supernova remnant. [Credit: NASA/CXC/SAO]

Nearly every atom of your body was forged in a supernova explosion and dispersed into space. But how do massive stars explode? The details are complicated, pushing the limits of computer simulations and our ability to observe with telescopes. In the absence of very close-by events, the best data come from supernova remnants: the still-glowing gas ejected during the explosion. A new set of observations of X-ray emissions from radioactive titanium in the Cassiopeia A supernova remnant show that it was a lumpy space princess highly asymmetrical explosion. That agrees with theory, but the researchers also turned up an odd disconnect between the titanium and other materials.

Cassiopeia A (abbreviated Cas A) is a historical oddity. The supernova was relatively close to Earth—a mere 11,000 light-years distant—and should have been visible around CE 1671, yet no astronomers of any culture recorded it. That’s in stark contrast to famous earlier explosions: Tycho’s supernova, Kepler’s supernova, and of course the supernova that made the Crab Nebula. This mysterious absence has led some astronomers to speculate that some unknown mechanism diffused the energy from the explosion, making the supernova far less bright than expected. [Read more...]

Supernovas: mysterious and lumpy space explosions

Chandra space telescope image of an X-ray binary system containing a neutron star. [Credit: X-ray: NASA/CXC/Univ. of Wisconsin-Madison/S.Heinz et al; Optical: DSS; Radio: CSIRO/ATNF/ATCA]

Chandra space telescope image of an X-ray binary system containing a neutron star. [Credit: X-ray: NASA/CXC/Univ. of Wisconsin-Madison/S.Heinz et al; Optical: DSS; Radio: CSIRO/ATNF/ATCA]

About 380,000 years after the Big Bang, the Universe cooled off enough for stable atoms to form out of the primordial plasma. However, sometime in the billion years or so after that, something happened to heat the gas up again, returning it to plasma form. Though we know reionization (as it is called) happened, that epoch in the history of the cosmos is hard to study, so we don’t know exactly when and how the reheating happened. If a new proposed model is correct, though, ionization happened close to the end of that era, and was driven by binary systems containing a black hole or neutron star.

One new model, proposed by Anastasia Fialkov, Rennan Barkana, and Eli Visbal, suggests that energetic X-rays could have heated the primoridal gas to the point that reionization happened relatively rapidly. That’s in contrast with other hypotheses, which predict a more gradual reionization process. The X-rays in the new model were emitted by systems that include neutron stars or black holes. The nicest feature of the new proposal is that it predicts a unique pattern in light emission from the primordial gas, which could conceivably be measured by current radio telescopes. [Read more....]

Ionizing the Universe with black holes and neutron stars

Magnetic monopoles are hypothetical objects that act like the isolated north or south pole of a magnet. Ordinarily when you break a magnet in half, you end up with two smaller magnets, but some theories predict independent existence for monopoles — though they obviously must be rare in nature, because we haven’t seen one yet.

When detectors fail, sometimes ingenuity can provide another way. As Richard Feynman realized, quantum systems can be used to simulate each other if the structure of their quantum states is the same. A group of researchers used a Bose-Einstein condensate — a collection of very cold atoms that behave like a single quantum system — to emulate the behavior of a magnetic monopole.

Thus, in lieu of hunting for particles that are monopolar, M. W. Ray, E. Ruokokoski, S. Kandel, M. Möttönen, and D. S. Hall emulated the behavior of a north magnetic charge using ultracold atoms. The result was behavior described as a Dirac magnetic monopole, something never before seen. This experiment relied on the quantum character of monopoles and might provide hope that isolated magnetic charges could exist in nature.

Quantum simulations work like simulations run on an analog computer: researchers construct electric circuits that obey the same basic mathematical equations as a more complicated physical phenomenon, which allows them to emulate the complicated system without trying to solve the (possibly unsolvable) equations that describe it. A quantum simulation lets physicists substitute a controllable physical system for one that might be too challenging to ever construct in the lab. [Read more....]

Emulating magnetic monopoles in Bose-Einstein condensates

Cartoon showing X-ray laser probing of Rydberg states in argon atoms. [Credit: Adam Kirrander]

Cartoon showing X-ray laser probing of Rydberg states in argon atoms. [Credit: Adam Kirrander]

I really love how many experiments are beginning to probe to the limits of quantum measurement. I wrote about a pair of cool studies in December that revealed the quantum wavefunction — the mathematical structure governing the behavior of particles. Today, my latest article in Ars Technica examined a proposed experiment using X-ray lasers to study the dynamics of electrons in argon (and other inert gases) in both space and time.

Rydberg atoms have the electrons in their outer layers excited until the electrons are only weakly bound to the nucleus, making the atoms physically very large. The increased size allows light to scatter off the outermost electrons without much interference from the nucleus or from the inner core of electrons. In other words, it’s a way to isolate the electron dynamics from other messy phenomena. Noble gases like argon are particularly useful for this, since they are largely non-reactive chemically and relatively easy to model theoretically. [Read more....]

Studying electron motion in space and time