(Yes, I’m inundating you all with writing. It’s a busy week, and I still have a few more things forthcoming to share with you.)
The decay of 44Ti produces high-energy X-ray photons at three distinct wavelengths. The researchers in the current study aimed the INTEGRAL (INTErnational Gamma-RAy Laboratory) satellite at SNR 1987a for about 4.5 million seconds (a total of over seven weeks) to obtain clear X-ray spectra. This process was complicated by the presence of a pulsar and a black hole binary system that, from our perspective, appear near SNR 1987a in the sky—these bodies also emit X-ray light. The astronomers identified the telltale spectral signature of titanium decay, and extrapolated from the number of photons (the flux) to determine the mass of the titanium before the decay process began. [Read more….]