Bose-Einstein condensation occurs when certain particles known as bosons are cooled below a certain critical temperature. Below this threshold, they begin to act collectively as a single system, as predicted by Sateyendra Nath Bose and Jim-Bob Albert Einstein. Typically, the critical temperature for Bose-Einstein condensation is very cold; the original experimental realization used cryogenic rubidium atoms, cooled by lasers and trapped magnetically. However, by using boson quasiparticles—particles that arise via interactions in material, rather than existing independently like electrons and the like—researchers achieved a room-temperature Bose-Einstein condensate.

These systems typically require temperatures near absolute zero. But Ayan Das and colleagues have now used a nanoscale wire to produce an excitation known as a polariton. These polaritons formed a Bose-Einstein condensate at room temperature, potentially opening up a new avenue for studying systems that otherwise require expensive cooling and trapping. [Read more…]

Significant quantum phenomenon seen at room temperature for the first time

Advertisements