Chandra space telescope image of an X-ray binary system containing a neutron star. [Credit: X-ray: NASA/CXC/Univ. of Wisconsin-Madison/S.Heinz et al; Optical: DSS; Radio: CSIRO/ATNF/ATCA]

Chandra space telescope image of an X-ray binary system containing a neutron star. [Credit: X-ray: NASA/CXC/Univ. of Wisconsin-Madison/S.Heinz et al; Optical: DSS; Radio: CSIRO/ATNF/ATCA]

About 380,000 years after the Big Bang, the Universe cooled off enough for stable atoms to form out of the primordial plasma. However, sometime in the billion years or so after that, something happened to heat the gas up again, returning it to plasma form. Though we know reionization (as it is called) happened, that epoch in the history of the cosmos is hard to study, so we don’t know exactly when and how the reheating happened. If a new proposed model is correct, though, ionization happened close to the end of that era, and was driven by binary systems containing a black hole or neutron star.

One new model, proposed by Anastasia Fialkov, Rennan Barkana, and Eli Visbal, suggests that energetic X-rays could have heated the primoridal gas to the point that reionization happened relatively rapidly. That’s in contrast with other hypotheses, which predict a more gradual reionization process. The X-rays in the new model were emitted by systems that include neutron stars or black holes. The nicest feature of the new proposal is that it predicts a unique pattern in light emission from the primordial gas, which could conceivably be measured by current radio telescopes. [Read more….]

Ionizing the Universe with black holes and neutron stars

Advertisements