O, what entangled photons we weave!

(OK, it doesn’t scan. So sue me.) Quantum entanglement is a challenging topic, and one which has tripped up a lot of people (including many physicists!) over the decades. In brief, entanglement involves two (or more) particles constituting a single system: measurement on one particle instantly determines the result of similar measurements on the second, no matter how far they are separated in space. While no information is transferred in this process, it’s still at odds with our everyday experience with how the world should work. I updated my earlier explanation of entanglement, which hopefully can help clear up some of the confusion.

Recent work either assumes entanglement is real and probes some of the more interesting implications, or tests some mathematical relations known as Bell’s inequalities. The latter are aimed at quantifying the difference between the predictions of quantum physics and certain alternative models. In that spirit, a group of researchers proposed using light from quasars to randomize the measurement apparatus in entanglement experiments, to eliminate the tiny possibility of a weird loophole in quantum theory.

If a detector has some correlation with the hidden variables of the particles being measured, then the two detectors don’t act independently. That’s true even if only a very tiny amount of information is exchanged less than a millisecond before measurements take place. The interaction would create the illusion that the particles are entangled in a quantum sense, when in fact they are influencing the detectors, which in turn dictate what measurements are being taken. This is known as the “detector settings independence” loophole—or somewhat facetiously as the “free will” loophole, since it implies the human experimenter has little or no choice over the detector settings. [Read more…]

Final note: this is probably the first paper I’ve covered that involves both my undergraduate research focus (quantum measurement) and my PhD work (cosmology), albeit in a much different way than both.

Advertisements