A discovery that made a thousand scientists burst into cheers and tears

[ This blog is dedicated to tracking my most recent publications. Subscribe to the feed to keep up with all the science stories I write! ]

Part of one of the mirror assemblies that make up the Laser Interferometer Gravitational-wave Observatory (LIGO) at Livingston, Louisiana. I visited the site in 2012 during the upgrade of the lab to Advanced LIGO. [Credit: moi]

Part of one of the mirror assemblies that make up the Laser Interferometer Gravitational-wave Observatory (LIGO) at Livingston, Louisiana. I visited the site in 2012 during the upgrade of the lab to Advanced LIGO. [Credit: moi]

It’s not every day that we get to usher in an entirely new branch of astronomy. Yesterday, members of the LIGO collaboration announced the first direct detection of gravitational waves, which are a way to study the universe we can’t see using light. Much of my PhD research involved gravitational physics, including a bit of gravitational wave work. I even visited LIGO twice because … well, why not? For that reason, yesterday’s announcement brought tears to my eyes, and I’m not the only one. This is the start of a new in the study of the universe. And here’s what I had to say about it for The Atlantic:

The Dawn of a New Era in Science

By announcing the first detection of gravitational waves, scientists have vindicated Einstein and given humans a new way to look at the universe

For The Atlantic:

More than a billion years ago, in a galaxy that sits more than a billion light-years away, two black holes spiraled together and collided. We can’t see this collision, but we know it happened because, as Albert Einstein predicted a century ago, gravitational waves rippled out from it and traveled across the universe to an ultra-sensitive detector here on Earth.

This discovery, announced today by researchers with the Laser Interferometer Gravitational-wave Observatory (LIGO), marks another triumph for Einstein’s general theory of relativity. And more importantly, it marks the beginning of a new era in the study of the universe: the advent of gravitational-wave astronomy. The universe has just become a much more interesting place. [Read the rest at The Atlantic]

Advertisements