Blowing up high-mass stars with low-mass neutrinos

[ This blog is dedicated to tracking my most recent publications. Subscribe to the feed to keep up with all the science stories I write! ]

Low-mass particles that make high-mass stars go boom

Simulations are key to showing how neutrinos help stars go supernova.

For Symmetry Magazine:

When some stars much more massive than the sun reach the end of their lives, they explode in a supernova, fusing lighter atoms into heavier ones and dispersing the products across space—some of which became part of our bodies. As Joni Mitchell wrote and Crosby Stills Nash & Young famously sang, “We are stardust, we are golden, we are billion-year-old carbon.”

However, knowing this and understanding all the physics involved are two different things. We can’t make a true supernova in the lab or study one up close, even if we wanted to. For that reason, computer simulations are the best tool scientists have. Researchers program equations that govern the behavior of the ingredients inside the core of a star to see how they behave and whether the outcomes reproduce behavior we see in real supernovae. There are many ingredients, which makes the simulations extraordinarily complicated—but one type of particle could ultimately drive supernova explosion: the humble neutrino. [Read the rest at Symmetry Magazine]

Advertisement
%d bloggers like this: