Why falsifiability is a false guide to what is and isn’t science

I had a liberal arts education, which means that I mostly use what I learned to post nonsense on Twitter. However, thanks to my advisor, I got a solid grounding in the philosophy of science. While I’m certainly no philosopher myself, I also (hopefully) have a less simplistic view of how science works and doesn’t work than what is often presented as the “scientific method” and suchlike. For Symmetry, I got a chance to talk a little about how “falsifiability” is widely promoted as a way to tell what is scientific and what is not, and why it’s actually a poor criterion, both from a philosophical and scientific point of view.

[ This blog is dedicated to tracking my most recent publications. Subscribe to the feed to keep up with all the science stories I write! ]

Falsifiability and physics

Can a theory that isn’t completely testable still be useful to physics?

For Symmetry Magazine:

What determines if an idea is legitimately scientific or not? This question has been debated by philosophers and historians of science, working scientists, and lawyers in courts of law. That’s because it’s not merely an abstract notion: What makes something scientific or not determines if it should be taught in classrooms or supported by government grant money.

The answer is relatively straightforward in many cases: Despite conspiracy theories to the contrary, the Earth is not flat. Literally all evidence is in favor of a round and rotating Earth, so statements based on a flat-Earth hypothesis are not scientific.

In other cases, though, people actively debate where and how the demarcation line should be drawn. One such criterion was proposed by philosopher of science Karl Popper (1902-1994), who argued that scientific ideas must be subject to “falsification.”

[Read the rest at Symmetry Magazine]


Seeing the unseeable: humanity’s first image of a black hole

Yesterday, the Event Horizon Telescope collaboration released the first image of a black hole humanity has ever seen. That simple-looking image represents a century of scientific work: from the first theoretical calculations describing black holes; to the earliest hints that every large galaxy contains a supermassive black hole at its heart; to the technological advances needed to network a world-spanning array of radio telescopes. When I was in college and graduate school, many people thought this very thing was impossible — I know I did. I am happy to say I was wrong then, and this picture of the 6.5 billion solar-mass black hole at the heart of the galaxy M87 is the most thrilling image of my scientific and science-writing career thus far.

the black hole at the center of the M87 galaxy, as seen by the Event Horizon Telescope

The first image humanity has ever captured of a black hole: the supermassive black hole at the heart of the M87 galaxy. [Credit: Event Horizon Telescope]

[ This blog is dedicated to tracking my most recent publications. Subscribe to the feed to keep up with all the science stories I write! ]

The incredible story behind our first image of a black hole

For the first time ever, scientists have captured a direct image of a black hole. The image, captured by the Event Horizon Telescope, allows us to see something that was thought to be invisible


A black hole is invisible by nature. One of the strangest predictions to come out of Albert Einstein’s theory of general relativity, a black hole emits no radiation we can detect, and it swallows up everything that falls on it, matter and light alike. The boundary of a black hole — its event horizon — is a border that can only be crossed from the outside to the inside, not in reverse.

So it might seem paradoxical to talk about capturing an image of a black hole, but this is precisely the mission of the Event Horizon Telescope (EHT). Today, April 10, 2019, will go down in history as the day EHT scientists released the very first direct image of a black hole.

It’s not one in our own Galactic centre, but is at the centre of the galaxy M87 – a resident of the neighbouring Virgo galaxy cluster, which is the home of several trillion stars. The feat marks the first time in history that astronomers have seen the shape of an event horizon. It’s an unprecedented map of gravity at its strongest, involving hundreds of astronomers, engineers, and data scientists from around the world.

[Read the rest at WIRED UK…]