Guardians of the Galaxy…er, black holes vol. 3

[ This blog is dedicated to tracking my most recent publications. Subscribe to the feed to keep up with all the science stories I write! ]

Part 3 of my 4-part series on black holes for Medium members is up; part 1 is here and part 2 is here. If enough of you read, they may keep me around to write more, so please read and share!

Seeing the Invisible

Black holes are invisible, but astronomers have developed a lot of ways to see them through the matter that surrounds them

No Rocket Raccoon, but my latest does have a guy named Grote. [Credit: National Radio Astronomy Observatory/moi]

For Medium:

In 1937, a deeply weird engineer named Grote Reber built a telescope in the lot next to his mother’s house in Wheaton, Illinois. Home observatories aren’t unusual, but Reber’s project was the first telescope designed to look for radio waves from space, and he was only the second person in history to find them. Karl Jansky, the first radio astronomer, had accidentally discovered astronomical radio waves while working on shortwave radio communications.

But Reber set out deliberately to study the cosmos in radio light. He found that the center of the Milky Way emitted a lot of radio waves and discovered an intense radio source in the constellation Cygnus. By the 1950s, astronomers found many other radio galaxies (as they were creatively named) that emitted very powerful radio waves from small regions at the centers of those galaxies.

As we learned in Part 2 of this series, the sources of the radio waves in the Milky Way and beyond turned out to be supermassive black holes: powerful gravitational dynamos millions or billions of times the mass of our sun. As with Reber’s discoveries, the study of black holes has been driven by invention and creativity. In fact, every new advance in astronomy has led to new discoveries about black holes, and new technologies are being invented for the purpose of studying these weird objects.

Read the rest at Medium…

Advertisements

The Care and Feeding of Black Holes

[ This blog is dedicated to tracking my most recent publications. Subscribe to the feed to keep up with all the science stories I write! ]

Part 2 of my 4-part series on black holes for Medium members is up; you can read part 1 here. If enough of you read, they may keep me around to write more, so please read and share!

The Care and Feeding of Black Holes

How intrinsically invisible objects become the brightest things in the universe

For Medium:

In the late 1950s, astronomers began spotting a number of bright sources of radio waves and visible light. These sources were pinpoints resembling blue stars, but further investigation showed they had to be something very different. For one thing, these quasi-stellar objects, as they were known then, were extraordinarily distant, much farther than any single star would be visible.

The spectra of these new quasi-stellar objects, or quasars, as physicist Hong-Yee Chiu abbreviated their name in 1964, showed they were emitting light through a completely different mechanism than starlight. The quantity of light quasars emitted to be visible across the universe meant they had to be driven by gravity.

Based on the data, astronomers concluded that each quasar was powered by a black hole millions or billions of times the mass of our sun. These supermassive black holes pull huge amounts of matter onto themselves, accelerating it until it glows very brightly. Additionally, the black hole jets a lot of matter away from itself rather than eating it, and those jets also glow intensely. These processes turn the ordinarily invisible black hole into something bright enough to see from billions of light-years away, outshining whole galaxies.

[read the read at Medium…]

My new series on black holes!

[ This blog is dedicated to tracking my most recent publications. Subscribe to the feed to keep up with all the science stories I write! ]

I’ve just started a new series on black holes for Medium members. The first part is available now, with three more parts to come. And if enough of you read, they may keep me around to write more, so please read and share!

Exploring Black Holes: Frozen Stars and Gravitational Dynamos

Black holes are gravitational superheroes. Here is their origin story, including World War I, magnificent mustaches, and Albert Einstein

For Medium:

February 11, 2016, was a landmark day. After many decades of searching, scientists announced they had detected gravitational waves for the first time: disturbances in the structure of space-time that travel at light speed. But there was a second triumph of physics hiding inside that one. The waves gave us the best evidence so far for the existence of some of the most fascinating objects in our universe: black holes.
Few scientists these days doubt that black holes exist. But in a way, all our evidence for them is circumstantial. Black holes, by their very nature, are difficult to observe. All light falling on them is absorbed, rendering them nearly invisible.
On the other hand, black holes are the strongest gravitational powerhouses possible. When they strip matter off stars or out of interstellar gas clouds, that material heats up and shines brightly. It’s a seeming paradox: invisible objects that end up being some of the brightest things in the universe. The black holes known as quasars can be seen billions of light-years away. [read the rest at Medium…]

Seeing the invisible monster at the Milky Way center

[ This blog is dedicated to tracking my most recent publications. Subscribe to the feed to keep up with all the science stories I write! ]

This is my second print magazine feature for Smithsonian Air & Space Magazine. The first was about gravitational waves, published not long before the LIGO detector found the first gravitational wave signals. The new piece is about the black hole at the center of our galaxy, published just a few months before…well, read the article to see why this is a good time to be writing about that particular black hole.

The First Sighting of a Black Hole

We know one lurks at the center of the Milky Way, but to these astronomers, seeing will be believing

For Smithsonian Air & Space Magazine:

he center of the galaxy doesn’t look like much, even if you’re lucky enough to live in a place where the night sky is sufficiently dark to see the bands of the Milky Way. In visible light, the stars between here and there blur together into a single brilliant source, like a bright beam hiding the lighthouse behind it.

But in other types of radiation—radio waves, infrared, X-rays—astronomers have detected the presence of an object with the mass of four million suns packed into a region smaller than our solar system: a supermassive black hole.

Astronomers call it Sagittarius A*, or Sgr A* (pronounced “sadge A star”) for short, because it’s located (from our point of view) in the Sagittarius constellation. Discovering the Milky Way’s black hole has helped cement the idea that the center of nearly every large galaxy harbors a supermassive black hole. But despite mounting evidence for black holes, we still haven’t seen one directly. [Read the rest at Smithsonian Air & Space Magazine]

How can we see black holes if they’re invisible?

[ This blog is dedicated to tracking my most recent publications. Subscribe to the feed to keep up with all the science stories I write! ]

The Shadow of a Black Hole

From NOVA:

The invisible manifests itself through the visible: so say many of the great works of philosophy, poetry, and religion. It’s also true in physics: we can’t see atoms or electrons directly and dark matter seems to be entirely transparent, yet this invisible stuff makes and shapes the universe as we know it.

Then there are black holes: though they are the most extreme gravitational powerhouses in the cosmos, they are invisible to our telescopes. Black holes are the unseen hand steering the evolution of galaxies, sometimes encouraging new star formation, sometimes throttling it. The material they send jetting away changes the chemistry of entire galaxies. When they take the form of quasars and blazars, black holes are some of the brightest single objects in the universe, visible billions of light-years away. The biggest supermassive black holes are billions of times as massive as the Sun. They are engines of creation and destruction that put the known laws of physics to their most extreme test. Yet, we can’t actually see them. [read the rest at NOVA…]

This piece, which emphasizes the great science coming from the Event Horizon Telescope (EHT), is a  companion to my earlier NOVA essay, “Do we need to rewrite general relativity?”

Why do some want to modify general relativity?

[ This blog is dedicated to tracking my most recent publications. Subscribe to the feed to keep up with all the science stories I write! ]

And yes, I did refer to MOND as “a fungus in the basement of astronomy”.

Do We Need to Rewrite General Relativity?

For NOVA “The Nature of Reality”:

General relativity, the theory of gravity Albert Einstein published 100 years ago, is one of the most successful theories we have. It has passed every experimental test; every observation from astronomy is consistent with its predictions. Physicists and astronomers have used the theory to understand the behavior of binary pulsars, predict the black holes we now know pepper every galaxy, and obtain deep insights into the structure of the entire universe.

Yet most researchers think general relativity is wrong.

To be more precise: most believe it is incomplete. After all, the other forces of nature are governed by quantum physics; gravity alone has stubbornly resisted a quantum description. Meanwhile, a small but vocal group of researchers thinks that phenomena such as dark matter are actually failures of general relativity, requiring us to look at alternative ideas. [Read the rest at NOVA…]

No quantum foam seen in the cosmic beer glass

[ This blog is dedicated to tracking my most recent publications. Subscribe to the feed to keep up with all the science stories I write! ]

Light from distant black holes doesn’t surf on waves of quantum foam

Strongest check yet on quantum gravity effects in astronomy turns up nothing

For Ars Technica:

Quantum gravity is notoriously slippery. While the Standard Model successfully describes three forces of nature, it doesn’t include gravity, so gravity still has no consistent quantum theory. To make matters worse, gravity is so weak that it’s difficult to probe at the sorts of energies where any minuscule quantum effects would pop out. However, some researchers predict that those tiny effects could accumulate over cosmological distances: light traveling from far-off quasars would be changed by the “quantum foam” of spacetime, producing blurry images in our telescopes—or even making objects seem to disappear.

A new report by E. S. Perlman and colleagues examines the disappearance hypothesis using gamma-ray data from quasars. In particular, they investigated a possibility suggested by the holographic principle, the idea that all the information in the cosmos can be encoded on the two-dimensional boundary that encloses it. Disappointingly for fans of quantum foam, the gamma ray data did not show any measurable fading or blurring of the quasars.

As the authors point out, these results don’t rule out anything general regarding quantum gravity, quantum foam, or the holographic principle. But they do provide the tightest constraint yet on cumulative effects of quantum foam on light traveling across the Universe. [Read the rest at Ars Technica…]