No quantum foam seen in the cosmic beer glass

[ This blog is dedicated to tracking my most recent publications. Subscribe to the feed to keep up with all the science stories I write! ]

Light from distant black holes doesn’t surf on waves of quantum foam

Strongest check yet on quantum gravity effects in astronomy turns up nothing

For Ars Technica:

Quantum gravity is notoriously slippery. While the Standard Model successfully describes three forces of nature, it doesn’t include gravity, so gravity still has no consistent quantum theory. To make matters worse, gravity is so weak that it’s difficult to probe at the sorts of energies where any minuscule quantum effects would pop out. However, some researchers predict that those tiny effects could accumulate over cosmological distances: light traveling from far-off quasars would be changed by the “quantum foam” of spacetime, producing blurry images in our telescopes—or even making objects seem to disappear.

A new report by E. S. Perlman and colleagues examines the disappearance hypothesis using gamma-ray data from quasars. In particular, they investigated a possibility suggested by the holographic principle, the idea that all the information in the cosmos can be encoded on the two-dimensional boundary that encloses it. Disappointingly for fans of quantum foam, the gamma ray data did not show any measurable fading or blurring of the quasars.

As the authors point out, these results don’t rule out anything general regarding quantum gravity, quantum foam, or the holographic principle. But they do provide the tightest constraint yet on cumulative effects of quantum foam on light traveling across the Universe. [Read the rest at Ars Technica…]