Doing astronomy using gravity

[ This blog is dedicated to tracking my most recent publications. Subscribe to the feed to keep up with all the science stories I write! If you like my writing and want to support it, please donate to my Patreon. ]

Astronomy without light

Gravitational waves let us see the invisible universe in new ways

For Astronomy Magazine:

Humans have always practiced some form of astronomy. For thousands of years, that meant observing only the light our eyes could see — either unaided or with a variety of instruments, such as astrolabes or telescopes. The 20th century brought new types of telescopes, which detect light we can’t see: infrared, X-ray, and so on.

Today, we’re witnessing the genesis of a whole new type of astronomy, and this one doesn’t use light at all. It uses gravitational waves.

Read the rest at Astronomy Magazine

Guardians of the Galaxy…er, black holes vol. 3

[ This blog is dedicated to tracking my most recent publications. Subscribe to the feed to keep up with all the science stories I write! ]

Part 3 of my 4-part series on black holes for Medium members is up; part 1 is here and part 2 is here. If enough of you read, they may keep me around to write more, so please read and share!

Seeing the Invisible

Black holes are invisible, but astronomers have developed a lot of ways to see them through the matter that surrounds them

No Rocket Raccoon, but my latest does have a guy named Grote. [Credit: National Radio Astronomy Observatory/moi]

For Medium:

In 1937, a deeply weird engineer named Grote Reber built a telescope in the lot next to his mother’s house in Wheaton, Illinois. Home observatories aren’t unusual, but Reber’s project was the first telescope designed to look for radio waves from space, and he was only the second person in history to find them. Karl Jansky, the first radio astronomer, had accidentally discovered astronomical radio waves while working on shortwave radio communications.

But Reber set out deliberately to study the cosmos in radio light. He found that the center of the Milky Way emitted a lot of radio waves and discovered an intense radio source in the constellation Cygnus. By the 1950s, astronomers found many other radio galaxies (as they were creatively named) that emitted very powerful radio waves from small regions at the centers of those galaxies.

As we learned in Part 2 of this series, the sources of the radio waves in the Milky Way and beyond turned out to be supermassive black holes: powerful gravitational dynamos millions or billions of times the mass of our sun. As with Reber’s discoveries, the study of black holes has been driven by invention and creativity. In fact, every new advance in astronomy has led to new discoveries about black holes, and new technologies are being invented for the purpose of studying these weird objects.

Read the rest at Medium…

The week in review (October 13 – 19)

I’m at GeekGirlCon this weekend, so I’m busy with non-writing activities as part of the DIY Science Zone. Thanks to our Fearless Leader Dr. “Nick Fury” Rubidium for putting our part of the event together!

  • Where Nature Hides the Darkest Mystery of All (Nautilus): Even though there’s no solid barrier, the event horizon of a black hole provides a boundary through which we can’t see or probe. That leads to a troubling idea: will we ever know what’s really inside that event horizon? Is there any way to learn about the interior by indirect measurements?
  • Black hole hair and the dark energy problem (Galileo’s Pendulum): Building off that article, what happens if our standard theory of gravity is modified? That’s not an entirely crazy idea: several modifications to general relativity have been proposed, inspired by inflation (the rapid expansion during the cosmos’ earliest moments) or dark energy. A recent paper examined that idea, and here’s my take.
  • Strongly magnetic pulsar could explain anomalous supernovas (Ars Technica): Some supernovas are particularly bright, especially some from the early Universe. These, known as “pair-instability” supernovas, are the explosion of very massive stars made of nearly pure hydrogen and helium. However, some of these super-luminous supernovas don’t quite fit that profile, including being too close. A new set of observations may show they are actually driven by a magnetar, a highly magnetized pulsar.
  • Gravitational waves show deficit in black hole collisions (Ars Technica): Mergers of supermassive black holes should happen frequently enough to produce a bath of gravitational radiation permeating the cosmos. While that gravitational wave background (GWB) possesses wavelengths too large for ground-based detectors like LIGO, astronomers realized it might be visible in the fluctuations of light from pulsars. However, they didn’t see what they expected, leading to the big question: why not?