Nuclear pasta and neutron stars

[ This blog is dedicated to tracking my most recent publications. Subscribe to the feed to keep up with all the science stories I write! ]

The Inside of a Neutron Star Looks Spookily Familiar

Exotic ultra-compressed matter can look like pasta, among other things

Two phases of matter found in neutron stars are featured in this recent Dinosaur Comic; click to see the whole thing. (Slightly naughty language included.) [Credit: Ryan North]

Two phases of matter found in neutron stars are featured in this recent Dinosaur Comic; click to see the whole thing. (Slightly naughty language included.) [Credit: Ryan North]

For Nautilus:

Hot fluids of neutrons that flow without friction, superconductors made of protons, and a solid crust built of exotic atoms—features like these make neutron stars some of the strangest objects we’ve found in the cosmos so far. They pack all the mass of a star into a sphere the size of a city, resulting in states of matter we just don’t have on Earth.

And yet, despite their extreme weirdness, neutron stars contain a mishmash of vaguely familiar features, as if seen darkly through a funhouse mirror. One of the weirdest is the fact that deep inside a neutron star you can find a whole menu full of (nuclear) pasta. [Read the rest at Nautilus…]

Advertisements

Slowing light to measure the creep of glaciers

[ This blog is dedicated to tracking my most recent publications. Subscribe to the feed to keep up with all the science stories I write! ]

My most recent article is an interesting combination of fundamental quantum physics research — the slowing of light inside specially-designed materials — with the study of the impacts of climate change on Greenland glaciers.

How to clock a glacier

From Nautilus:

low-flying airplane buzzes along the coast of Greenland, hovering over a glacier. The belly of the plane holds a laser that bounces light off the glacier’s face. As the light beam returns to the plane, it enters a black box that slows it to a crawl, turning it into a moment-by-moment report on the glacier’s speed. Each flight, each glacier measured, allows researchers to map the diminishment of the Greenland ice cap. Similar planes skirt Antarctica and the coast of Alaska, charting the damage to the ice cover.

These airplanes and their experimental equipment don’t exist yet. But the need to measure glacier flow in real time does exist. The latest report by Intergovernmental Panel on Climate Change (IPCC) projected that melting ice may result in as much as one meter of sea-level rise by the year 2100, threatening millions of people in low-lying nations and coastal cities. Knowing how glaciers melt can help researchers predict the future. But glaciers are, well, glacial. Most of them creep roughly two to three kilometers each year, covering less distance than most of us can walk in an hour. The fastest ice flow in Greenland is the glacier Jakobshavn, which moves at the blazingly slow speed of about 16 kilometers in a year—about 180 centimeters per hour. [Read the rest at Nautilus]

If you shine light on a barrier with two openings, it produces a distinct pattern of light on a distant screen. Measuring that pattern is standard in introductory physics laboratories. (You could even do it at home, but I recommend a very dark room and a bright laser pointer if you hope to see anything at all.) Where things get fun, though, is if you have a light source capable of sending a slow stream of photons — particles of light — through: you still get the interference pattern, but it emerges slowly from individual points of light. In other words, the photons behave as though the entire wave interference pattern is already present, even though they are single particles.

My latest article for Nautilus shows how researchers have taken this classic experiment, but use single photons to manipulate the interference pattern via the phenomenon known as entanglement. The result is a mind-bending experiment known as the “quantum eraser”:

The best way to see the quantum eraser is to couple the double-slit experiment with another fascinating quantum phenomenon: entanglement. In a typical implementation, light from a laser stimulates a certain kind of crystal, which in turn emits two photons with opposite polarization—one could oscillate left-right, while the other oscillates up-down. (You can see how this works by putting one pair of polarized sunglasses in front of another and rotating one pair. At certain angles, the light going through both lenses will fade to almost nothing, a sign that the light is passing through two filters with perpendicular orientations.)

The polarization of each photon is unknown before measurement, but because of how they’re generated, they are entangled, and measuring one can instantly affect each the other. That holds true no matter how far apart the two particles are or when the measurements are taken. [read more….]

Quantum droplets in an ocean of light

How did the biggest black holes form?

X-ray image of two black holes in the galaxy NGC 6240. Binary systems like this are possibly the origin of the most massive black holes in the cosmos. [Credit: NASA/CXC/MPE/S.Komossa et al. ]

X-ray image of two black holes in the galaxy NGC 6240. Binary systems like this are possibly the origin of the most massive black holes in the cosmos. [Credit: NASA/CXC/MPE/S.Komossa et al.]

The most massive known object in the cosmos is the black hole at the center of M87, a huge galaxy in the Virgo Cluster. While most large galaxies (including the Milky Way) harbor supermassive black holes, the very largest are interesting. That’s because galaxies and their black holes seem to share a history, based on the relationship between the mass of the black hole and the mass of the galaxy’s central region. Since large galaxies grew by devouring smaller galaxies, or by two galaxies merging into a larger one, it’s very likely the biggest black holes followed a similar process. My latest piece for Nautilus examines how this process might have taken place, and what it could reveal about the black holes themselves.

Earth emits gravitational waves as it orbits the Sun, though the amount of energy lost is imperceptible over the lifetime of the Solar System. Binary black holes are a different matter: Once they are relatively close, they shed a tremendous amount of energy, bringing them closer together with each orbit. (Binary black stars are thought to emit more gravitational energy as they merge than regular stars emit in the form of UV, IR, and visible light over their entire lifetimes of billions of years.) Eventually their event horizons will touch, and the system emits a lot more gravitational waves in a phase known as “ring-down,” as the lumpy, uneven merged mass becomes a smooth, perfectly symmetrical black hole. [Read more…]

The week in review (October 13 – 19)

I’m at GeekGirlCon this weekend, so I’m busy with non-writing activities as part of the DIY Science Zone. Thanks to our Fearless Leader Dr. “Nick Fury” Rubidium for putting our part of the event together!

  • Where Nature Hides the Darkest Mystery of All (Nautilus): Even though there’s no solid barrier, the event horizon of a black hole provides a boundary through which we can’t see or probe. That leads to a troubling idea: will we ever know what’s really inside that event horizon? Is there any way to learn about the interior by indirect measurements?
  • Black hole hair and the dark energy problem (Galileo’s Pendulum): Building off that article, what happens if our standard theory of gravity is modified? That’s not an entirely crazy idea: several modifications to general relativity have been proposed, inspired by inflation (the rapid expansion during the cosmos’ earliest moments) or dark energy. A recent paper examined that idea, and here’s my take.
  • Strongly magnetic pulsar could explain anomalous supernovas (Ars Technica): Some supernovas are particularly bright, especially some from the early Universe. These, known as “pair-instability” supernovas, are the explosion of very massive stars made of nearly pure hydrogen and helium. However, some of these super-luminous supernovas don’t quite fit that profile, including being too close. A new set of observations may show they are actually driven by a magnetar, a highly magnetized pulsar.
  • Gravitational waves show deficit in black hole collisions (Ars Technica): Mergers of supermassive black holes should happen frequently enough to produce a bath of gravitational radiation permeating the cosmos. While that gravitational wave background (GWB) possesses wavelengths too large for ground-based detectors like LIGO, astronomers realized it might be visible in the fluctuations of light from pulsars. However, they didn’t see what they expected, leading to the big question: why not?

The week in review (August 18-24)

Granulation on the surface of the Sun, created by rising bubbles of hot plasma. Fluctuations in these bubbles can be measured on distant stars, which provides a way to calculate the stars' surface gravity. [Credit: Hinode JAXA/NASA/PPARC]

Granulation on the surface of the Sun, created by rising bubbles of hot plasma. Fluctuations in these bubbles can be measured on distant stars, which provides a way to calculate the stars’ surface gravity. [Credit: Hinode JAXA/NASA/PPARC]

I’ve been remiss in blogging at Bowler Hat Science, largely because…well, I’ve been writing too much elsewhere. So, I’m going to try something different: instead of blogging each new article I write in a separate entry, I’ll write a single post summarizing everything in one go.

  • How I learned to stop worrying and love tolerate the multiverse (Galileo’s Pendulum): My explanation of cosmology involving parallel universes is a response to a piece placing the multiverse in the same category as telepathy. While I’m not a fan of the multiverse concept, I reluctantly accept that it could be a correct description of reality.
  • An Arguably Unreal Particle Powers All of Your Electronics (Nautilus): Electrons in solids behave differently than their wild cousins. In some materials, the electronic and magnetic properties act as though they arise from particles that are lighter or heavier than electrons, or multiple types of particles with strange spins or electric charges. Are these quasiparticles real?
  • Kepler finds stars’ flickers reveal the gravity at their surface (Ars Technica): The Kepler observatory’s primary mission was to hunt for exoplanets, but arguably it’s been equally valuable for studying stars. A new study revealed a way to measure a star’s surface gravity by timing short-duration fluctuations — the rippling of hot plasma bubbles on the surface known as granulation (see above image).
  • Destruction and beauty in a distant galaxy (Galileo’s Pendulum): The giant galaxy M87 has a correspondingly huge black hole at its heart. That black hole in turn generates an enormous jet of matter extending 5,000 light-years, which fluctuates in a way we can see with telescopes. In that way, an engine of destruction shapes its environment and produces a thing of beauty.
  • The Freaky Celestial Events We See—and the Ones We Don’t (Nautilus): In another faraway galaxy, a black hole destroyed a star, producing a burst of gamma rays that lingered for months. This event is the only one of its kind we’ve yet seen, prompting the question: how do we evaluate events that are unique? How can we estimate how likely they truly are, especially if we’re seeing them from a privileged angle?
  • This isn’t writing, but after listing two black hole articles in a row, it seems a good time to advertise my Introduction to Black Holes online class in October! Sign up to learn all* about black holes. *All = what I can cover in four hours of class time.
  • Warp Speed? Not So Fast (Slate): Many articles have appeared over the last year or so profiling a NASA researcher, whose research supposedly could lead to a faster-than-light propulsion system. The problem: very little actual information about his work is known, and what he’s said publicly contradicts what we understand about general relativity and quantum physics.

Speaking of warp drives, I’ll conclude with this wonderful video of Patrick Stewart engaging with some obvious Star Trek fans.

I don’t spent a lot of time thinking about the multiverse: the possible existence of regions of the cosmos that have never been connected to ours at any time, and may never be in the future. That’s because those parallel pocket universes aren’t directly detectable, and may never be even indirectly detectable, putting them into a category that’s hard for a scientist to deal with. However, inflation — the extremely rapid expansion of the Universe in its earliest instants — almost certainly would produce those pocket universes, so I’ve reluctantly come to terms with the existence of the multiverse, on the principle that the alternative ideas are largely problematic.

Some physicists have gone a bit farther with the multiverse idea. Since our Universe has the correct physical/chemical properties to harbor life (self-evidently, since we’re here to talk about it), and those properties depend on a delicate balance of physical parameters, then maybe the multiverse can help explain what makes our pocket universe habitable. If those other pocket universes have different physical parameters, maybe the set ours has came about by a random process: no need for “fine-tuning”. However, as I argue in a new piece for the Nautilus blog, the fine-tuning problem is separate from the question of the multiverse, and philosophy won’t provide the solution to either.

We know that the universe is capable of supporting life, and that any physical parameters must be consistent with that obvious fact. Beyond that, we can’t go yet: We have no more evidence for multiverses than we have evidence for life beyond Earth—though it’s reasonable to think both exist. The uncomfortable possibility is that there are other pocket universes, but we’ll only ever know about them indirectly. That doesn’t make them any less real, just discomforting. [Read more…]

On the multiverse, metaphysics, and meaning