The week in review (August 18-24)

Granulation on the surface of the Sun, created by rising bubbles of hot plasma. Fluctuations in these bubbles can be measured on distant stars, which provides a way to calculate the stars' surface gravity. [Credit: Hinode JAXA/NASA/PPARC]

Granulation on the surface of the Sun, created by rising bubbles of hot plasma. Fluctuations in these bubbles can be measured on distant stars, which provides a way to calculate the stars’ surface gravity. [Credit: Hinode JAXA/NASA/PPARC]

I’ve been remiss in blogging at Bowler Hat Science, largely because…well, I’ve been writing too much elsewhere. So, I’m going to try something different: instead of blogging each new article I write in a separate entry, I’ll write a single post summarizing everything in one go.

  • How I learned to stop worrying and love tolerate the multiverse (Galileo’s Pendulum): My explanation of cosmology involving parallel universes is a response to a piece placing the multiverse in the same category as telepathy. While I’m not a fan of the multiverse concept, I reluctantly accept that it could be a correct description of reality.
  • An Arguably Unreal Particle Powers All of Your Electronics (Nautilus): Electrons in solids behave differently than their wild cousins. In some materials, the electronic and magnetic properties act as though they arise from particles that are lighter or heavier than electrons, or multiple types of particles with strange spins or electric charges. Are these quasiparticles real?
  • Kepler finds stars’ flickers reveal the gravity at their surface (Ars Technica): The Kepler observatory’s primary mission was to hunt for exoplanets, but arguably it’s been equally valuable for studying stars. A new study revealed a way to measure a star’s surface gravity by timing short-duration fluctuations — the rippling of hot plasma bubbles on the surface known as granulation (see above image).
  • Destruction and beauty in a distant galaxy (Galileo’s Pendulum): The giant galaxy M87 has a correspondingly huge black hole at its heart. That black hole in turn generates an enormous jet of matter extending 5,000 light-years, which fluctuates in a way we can see with telescopes. In that way, an engine of destruction shapes its environment and produces a thing of beauty.
  • The Freaky Celestial Events We See—and the Ones We Don’t (Nautilus): In another faraway galaxy, a black hole destroyed a star, producing a burst of gamma rays that lingered for months. This event is the only one of its kind we’ve yet seen, prompting the question: how do we evaluate events that are unique? How can we estimate how likely they truly are, especially if we’re seeing them from a privileged angle?
  • This isn’t writing, but after listing two black hole articles in a row, it seems a good time to advertise my Introduction to Black Holes online class in October! Sign up to learn all* about black holes. *All = what I can cover in four hours of class time.
  • Warp Speed? Not So Fast (Slate): Many articles have appeared over the last year or so profiling a NASA researcher, whose research supposedly could lead to a faster-than-light propulsion system. The problem: very little actual information about his work is known, and what he’s said publicly contradicts what we understand about general relativity and quantum physics.

Speaking of warp drives, I’ll conclude with this wonderful video of Patrick Stewart engaging with some obvious Star Trek fans.

Advertisements