How did the biggest black holes form?

X-ray image of two black holes in the galaxy NGC 6240. Binary systems like this are possibly the origin of the most massive black holes in the cosmos. [Credit: NASA/CXC/MPE/S.Komossa et al. ]

X-ray image of two black holes in the galaxy NGC 6240. Binary systems like this are possibly the origin of the most massive black holes in the cosmos. [Credit: NASA/CXC/MPE/S.Komossa et al.]

The most massive known object in the cosmos is the black hole at the center of M87, a huge galaxy in the Virgo Cluster. While most large galaxies (including the Milky Way) harbor supermassive black holes, the very largest are interesting. That’s because galaxies and their black holes seem to share a history, based on the relationship between the mass of the black hole and the mass of the galaxy’s central region. Since large galaxies grew by devouring smaller galaxies, or by two galaxies merging into a larger one, it’s very likely the biggest black holes followed a similar process. My latest piece for Nautilus examines how this process might have taken place, and what it could reveal about the black holes themselves.

Earth emits gravitational waves as it orbits the Sun, though the amount of energy lost is imperceptible over the lifetime of the Solar System. Binary black holes are a different matter: Once they are relatively close, they shed a tremendous amount of energy, bringing them closer together with each orbit. (Binary black stars are thought to emit more gravitational energy as they merge than regular stars emit in the form of UV, IR, and visible light over their entire lifetimes of billions of years.) Eventually their event horizons will touch, and the system emits a lot more gravitational waves in a phase known as “ring-down,” as the lumpy, uneven merged mass becomes a smooth, perfectly symmetrical black hole. [Read more…]

Advertisements

The long jet of gas in the galaxy M87, which is driven by the supermassive black hole at the galaxy’s center. New observations have revealed the structure of the gas disk near the black hole.

A collection of four big telescopes in Arizona, California, and Hawaii have banded together to examine one of the biggest black holes we know: the beast at the heart of the galaxy M87. What they found: the disk of gas driving M87’s huge jet rotates the same direction as the black hole that made it.

New observations from the Event Horizon Telescope (actually an array of four millimeter-wave telescopes working in concert) have revealed the best view so far of the supermassive black hole in the galaxy M87. As described in a Science paper, astronomers measured the motion of gas to a distance approximately 5.5 times the event horizon radius. That is close enough to confirm the gas circles in the same direction the black hole itself rotates. These observations help clarify the origin of the powerful jet of gas streaming from the galaxy’s center at a high fraction of the speed of light: it is likely driven by the swirling matter near the black hole’s boundary. [Read more….]

High-resolution image of supermassive black hole shows engine of destruction