Guardians of the Galaxy…er, black holes vol. 3

[ This blog is dedicated to tracking my most recent publications. Subscribe to the feed to keep up with all the science stories I write! ]

Part 3 of my 4-part series on black holes for Medium members is up; part 1 is here and part 2 is here. If enough of you read, they may keep me around to write more, so please read and share!

Seeing the Invisible

Black holes are invisible, but astronomers have developed a lot of ways to see them through the matter that surrounds them

No Rocket Raccoon, but my latest does have a guy named Grote. [Credit: National Radio Astronomy Observatory/moi]

For Medium:

In 1937, a deeply weird engineer named Grote Reber built a telescope in the lot next to his mother’s house in Wheaton, Illinois. Home observatories aren’t unusual, but Reber’s project was the first telescope designed to look for radio waves from space, and he was only the second person in history to find them. Karl Jansky, the first radio astronomer, had accidentally discovered astronomical radio waves while working on shortwave radio communications.

But Reber set out deliberately to study the cosmos in radio light. He found that the center of the Milky Way emitted a lot of radio waves and discovered an intense radio source in the constellation Cygnus. By the 1950s, astronomers found many other radio galaxies (as they were creatively named) that emitted very powerful radio waves from small regions at the centers of those galaxies.

As we learned in Part 2 of this series, the sources of the radio waves in the Milky Way and beyond turned out to be supermassive black holes: powerful gravitational dynamos millions or billions of times the mass of our sun. As with Reber’s discoveries, the study of black holes has been driven by invention and creativity. In fact, every new advance in astronomy has led to new discoveries about black holes, and new technologies are being invented for the purpose of studying these weird objects.

Read the rest at Medium…

The Care and Feeding of Black Holes

[ This blog is dedicated to tracking my most recent publications. Subscribe to the feed to keep up with all the science stories I write! ]

Part 2 of my 4-part series on black holes for Medium members is up; you can read part 1 here. If enough of you read, they may keep me around to write more, so please read and share!

The Care and Feeding of Black Holes

How intrinsically invisible objects become the brightest things in the universe

For Medium:

In the late 1950s, astronomers began spotting a number of bright sources of radio waves and visible light. These sources were pinpoints resembling blue stars, but further investigation showed they had to be something very different. For one thing, these quasi-stellar objects, as they were known then, were extraordinarily distant, much farther than any single star would be visible.

The spectra of these new quasi-stellar objects, or quasars, as physicist Hong-Yee Chiu abbreviated their name in 1964, showed they were emitting light through a completely different mechanism than starlight. The quantity of light quasars emitted to be visible across the universe meant they had to be driven by gravity.

Based on the data, astronomers concluded that each quasar was powered by a black hole millions or billions of times the mass of our sun. These supermassive black holes pull huge amounts of matter onto themselves, accelerating it until it glows very brightly. Additionally, the black hole jets a lot of matter away from itself rather than eating it, and those jets also glow intensely. These processes turn the ordinarily invisible black hole into something bright enough to see from billions of light-years away, outshining whole galaxies.

[read the read at Medium…]

The term “quasar” describes a behavior rather than an object: when a supermassive black hole (SMBH) at the center of a galaxy gorges on gas, the infalling matter produces a lot of light. While most galaxies are known to have SMBHs, not all of those exhibit quasar behavior. Similarly, black holes created from the deaths of massive stars—the stellar mass black holes—don’t generally consume matter at a rapid rate. However, a few do, and those are known as microquasars. Four microquasar candidates have been found in the Milky Way, and now one has been located in M31, the Andromeda Galaxy.

Unlike microquasars in the Milky Way, those in other galaxies potentially provide an unimpeded view of the black hole accretion process. This will allow astronomers to test whether microquasars are miniature versions of their supermassive cousins, and measure the accretion mechanism in unprecedented detail. Since the nearest “regular” quasars are much farther away than M31, a nearby microquasar provides a beautiful target for observations of how black holes beam infalling matter into jets, and the specific processes are by which they make their intense light. [Read more…]

A miniature quasar in Andromeda Galaxy