Weird X-Rays Spur Speculation about Dark Matter Detection

[ I am reviving the Bowler Hat Science blog as a quick way to link all my new publications. Subscribe to the feed to keep up with all my stories! ]

Weird X-Rays Spur Speculation about Dark Matter Detection

From Scientific American:

Many major discoveries in astronomy began with an unexplained signal: pulsars, quasars and the cosmic microwave background are just three out of many examples. When astronomers recently discovered x-rays with no obvious origin, it sparked an exciting hypothesis. Maybe this is a sign of dark matter, the invisible substance making up about 85 percent of all the matter in the universe. If so, it hints that the identity of the particles is different than the prevailing models predict.

The anomalous x-rays, spotted by the European Space Agency’s orbiting XMM–Newton telescope, originate from two different sources: the Andromeda Galaxy and the Perseus cluster of galaxies. The challenge is to determine what created those x-rays, as described in a study published last month in Physical Review Letters. (See also an earlier study published in The Astrophysical Journal.) The signal is real but weak and astronomers must now determine whether it is extraordinary or has a mundane explanation. If that can be done, they can set about the work of identifying what kind of dark matter might be responsible. [Read more at Scientific American ]


Our local group of galaxies—known imaginatively as the Local Group—has two huge galaxies: the Milky Way and M31, also known as the Andromeda Galaxy. Both of these galaxies are large enough to have a number of satellites, including the substantial Magellanic Clouds and M33 (Triangulum Galaxy). However, most satellites are dwarf galaxies, very faint and relatively low mass. As a result, a moderately complete census of satellites has proven difficult even for the Milky Way, but what recent observations have found is surprising. In both cases, a number of the satellite galaxies orbit in a single plane, and at least in the case of Andromeda, they orbit in the same direction.

The Pan-Andromeda Archaeological Survey (featuring the diverting acronym PAndAS) was established to provide a high-resolution, large-scale panorama of M31 and its environs. 27 dwarf galaxies that can be unambiguously associated with Andromeda lie within the PAndAS survey region. The astronomers measured the distances and velocities of each of these galaxies, yielding a three-dimensional and dynamical view of the M31 system.

They found 15 of those satellites were arranged along a relatively thin arc from the perspective of Earth, meaning they lie close to a single plane. Further analysis revealed 13 of the 15 galaxies were also moving in a coherent pattern: those “north” of Andromeda were moving away from us, while those “south” were traveling toward us. That indicates a clear rotational pattern; the authors estimated only a 1.4 percent probability of motion like this being random chance. [Read more…]

Why do half of Andromeda’s satellite galaxies orbit in a plane?