Are neutrinos their own worst enemies?

[ This blog is dedicated to tracking my most recent publications. Subscribe to the feed to keep up with all the science stories I write! ]

EXO-200 resumes its underground quest

The upgraded experiment aims to discover if neutrinos are their own antiparticles

For Symmetry Magazine:

Science is often about serendipity: being open to new results, looking for the unexpected.

The dark side of serendipity is sheer bad luck, which is what put the Enriched Xenon Observatory experiment, or EXO-200, on hiatus for almost two years.

Accidents at the Department of Energy’s underground Waste Isolation Pilot Project (WIPP) facility near Carlsbad, New Mexico, kept researchers from continuing their search for signs of neutrinos and their antimatter pairs. Designed as storage for nuclear waste, the site had both a fire and a release of radiation in early 2014 in a distant part of the facility from where the experiment is housed. No one at the site was injured. Nonetheless, the accidents, and the subsequent efforts of repair and remediation, resulted in a nearly two-year suspension of the EXO-200 effort.

Things are looking up now, though: Repairs to the affected area of the site are complete, new safety measures are in place, and scientists are back at work in their separate area of the site, where the experiment is once again collecting data. [Read the rest at Symmetry Magazine….]

Advertisements

A net for neutrinos at the bottom of the sea

[ This blog is dedicated to tracking my most recent publications. Subscribe to the feed to keep up with all the science stories I write! ]

Casting a net for neutrinos

The KM3NeT experiment will catch the elusive particles using the Mediterranean Sea

For Symmetry Magazine:

Like ordinary telescopes, KM3NeT operates in darkness—but there the resemblance ends. The Km3 Neutrino Telescope (where km3 means a cubic kilometer) is a suite of detectors that sits at the pitch-black bottom of the Mediterranean Sea, 3.5 kilometers below the waves and strong currents of the surface.

KM3NeT needs this absolute night to see the faint amount of light from ghostly neutrinos striking water molecules. Neutrinos pass through most material as though it weren’t there, which is why detectors need to be so big to spot them—more volume means more chances to see a neutrino interact. When completed, KM3NeT will be the largest neutrino detector in the world, made of about 1.3 trillion gallons of seawater. [Read the rest at Symmetry Magazine]