How quickly things can change in science: just a few years ago, we were barely able to talk about the diversity of planetary systems. Now, we are able to distinguish between planets orbiting in tight binary systems from those in wide binaries. Additionally, exoplanets in tight binaries can orbit either both stars together (circumbinary, or Tatooine-like systems) or one of two stars, where the second might be like a Jupiter in the system. In wide binaries, the second star is so far away that it’s barely attached to the system, but a new set of simulations may show that may actually lead to greater instability than experienced by planets in tight binaries.
Nathan A. Kaib, Sean N. Raymond, and Martin Duncan ran extensive computer simulations to model exoplanets residing in wide binary systems. They found that perturbations from other stars outside the binary system had a profound effect on the shape of the system’s orbits. In some cases, planets were ejected from the system entirely or ended up in larger or highly eccentric (elongated) orbits. Based on these results, the researchers argued that some of the observed exoplanet systems with eccentric orbits may actually reside in wide binary systems where we haven’t yet detected the companion stars. [Read more, and watch the video!]