Meet the glueball, the missing Standard Model particle

[ This blog is dedicated to tracking my most recent publications. Subscribe to the feed to keep up with all the science stories I write! ]

Glueballs are the missing frontier of the Standard Model

There should be particles made entirely of gluons, but we don’t know how to find them

For Ars Technica:

The discovery of the Higgs boson was rightfully heralded as a triumph of particle physics, one that brought completion to the Standard Model, the collection of theories that describes particles and their interactions. Lost in the excitement, however, was the fact that we’re still missing a piece from the Standard Model—another type of particle that doesn’t resemble any other we’ve yet seen.

The particle is a glueball, but its goofy name doesn’t express how interesting it is. Glueballs are unique in that they don’t contain any matter at all: they have no quarks or electrons or neutrinos. Instead, they are made entirely of gluons, which are the particles that bind quarks together inside protons, neutrons, and related objects.

Particle physicists are sure they exist, but everything else about them is complicated, to say the least. Like so many other exotic particles (including the Higgs), glueballs are very unstable, decaying quickly into other, less massive particles. We don’t have any ideas about their masses, however, which is obviously kind of important to know if you want to find them. We also don’t know exactly how they decay, making it hard to know exactly how we’ll identify them in experiments. [Read the rest at Ars Technica….]