Why the death of black holes is a big problem for physics

[ This blog is dedicated to tracking my most recent publications. Subscribe to the feed to keep up with all the science stories I write! ]

Part 4 of my 4-part series on black holes for Medium members is up; part 1 is herepart 2 is here, and part 3 is here. If enough of you read, they may keep me around to write more, so please read and share! And yes, the title is a John Donne reference, because I was an English minor and am required to make literary references as often as I can get away with.

Gravity Be Not Proud

The discovery that black holes emit particles and might eventually evaporate threw theoretical physics into chaos. Here’s why.

For Medium:

Hawking ended up being one of the very rare ALS patients to survive the condition, at the eventual cost of being confined to a wheelchair and communicating primarily through a computer. And his work on black holes — along with the work of a small handful of other physicists — opened up a new field of research in quantum gravity.

The most shocking discovery to come out of Hawking’s work: Black holes can emit radiation and can eventually evaporate.

Unfortunately for physicists, the radiation from a real black hole is too faint to be seen, and even a smaller black hole, like the ones seen by LIGO, would take a mind-blowingly long time to evaporate. However, the prediction of this Hawking radiation and death of black holes exposed a major problem in theoretical physics, one that is still unsolved today.

Read the rest at Medium…

Advertisements

Doing astronomy using gravity

[ This blog is dedicated to tracking my most recent publications. Subscribe to the feed to keep up with all the science stories I write! If you like my writing and want to support it, please donate to my Patreon. ]

Astronomy without light

Gravitational waves let us see the invisible universe in new ways

For Astronomy Magazine:

Humans have always practiced some form of astronomy. For thousands of years, that meant observing only the light our eyes could see — either unaided or with a variety of instruments, such as astrolabes or telescopes. The 20th century brought new types of telescopes, which detect light we can’t see: infrared, X-ray, and so on.

Today, we’re witnessing the genesis of a whole new type of astronomy, and this one doesn’t use light at all. It uses gravitational waves.

Read the rest at Astronomy Magazine

Star Trek, quantum mechanics, and the meaning of being human (kinda)

[ This blog is dedicated to tracking my most recent publications. Subscribe to the feed to keep up with all the science stories I write! ]

The trouble with teleportation

A panel from “The trouble with teleportation”, featuring me as a science officer. [Credit: Maki Naro (art), moi (words)]

Quantum teleportation is a really fascinating area of research, but it’s hampered by the name, which evokes Star Trek. The reality is trickier, and why a Star Trek-style transporter may never be possible is an interesting question in and of itself. Comics genius Maki Naro and I created a comics explainer going into what teleportation is and isn’t, with plenty of Star Trek to keep us all going.

Why physicists hate time

[ This blog is dedicated to tracking my most recent publications. Subscribe to the feed to keep up with all the science stories I write! ]

Wait a second: What came before the big bang?

Not everyone thinks the universe had a beginning.

This story originally appeared in the print edition of the September issue of Popular Science. This week, it appeared online with enhanced graphics. The text is by PopSci editor Rachel Feltman and me; the art is by Matei Apostolescu.

Cosmologists used to think the universe was totally timeless: no beginning, no end. That might sound mind-melting, but it’s easier on the scientific brain than figuring out what a set starting point would mean, let alone when it would be. So some physicists have cooked up alternative cosmological theories that make time’s role seem a little less important. The concepts are as trippy as those black-light posters you had in college.

[read the rest at Popular Science]