Swarming in time, synchronizing in space

[ This blog is dedicated to tracking my most recent publications. Subscribe to the feed to keep up with all the science stories I write! ]

This article is a little different from the fare you’re used to getting from me: it’s for SIAM News, which is the glossy magazine for members of the Society for Industrial and Applied Mathematics. The audience for this magazine, in other words, is professional mathematicians and related researchers working in a wide variety of fields. In this case, I covered research by mathematicians looking at a type of system that occurs in biology and materials science. While the article contains equations, I wrote it to be understandable if you skim that part.

Self-organization in Space and Time

For SIAM News:

Self-organization is an important topic across scientific disciplines. Be it the spontaneous flocking of birds or dramatic phase transitions like superconductivity in materials, collective behavior without underlying intelligence occurs everywhere.

Many of these behaviors involve synchronization, or self-organization in time, such as activation in heart cells or the simultaneous blinking of certain firefly species. Others are aggregations, or self-organization in space, like swarming insects, flocking birds, or the alignment of electron spins in magnetic material.

Despite their conceptual similarity, self-organization in space and time have largely been treated separately. “I was curious about whether the two fields had been wedded, and it turns out they hadn’t, at least not fully,” Kevin O’Keeffe, a postdoctoral researcher at the Massachusetts Institute of Technology, said. “I knew all these tricks and mathematical tools from synchronization, and I was looking to cross-fertilize them into the swarming world.”

[Read the rest at SIAM News]