The physics of dinosaurs!

[ This blog is dedicated to tracking my most recent publications. Subscribe to the feed to keep up with all the science stories I write! ]

Computer model for the swing of a Stegosaurus tail-spike assembly, also known as a thagomizer from a classic Gary Larson cartoon. (Alas, we didn't get permission to reprint this cartoon.)

Computer model for the swing of a Stegosaurus tail-spike assembly, also known as a thagomizer from a classic Gary Larson cartoon. (Alas, we didn’t get permission to reprint this cartoon.)

Like many (most?) of us, I was a huge dinosaur fan as a kid. I read every horrible, outdated book I could get my hands on. I read Robert Bakker’s book The Dinosaur Heresies not long after it was published, with its often-wrong but very provocative reimagining of how dinosaurs lived, moved, and interacted with their environments. My primary scientific love was space, and so I pursued physics as a career, but I never completely forgot my dinosaur obsession. Now in the February 2017 issue of Physics World, I get to combine the two interests!

Deducing how dinosaurs moved

How did dinosaurs dash and their cousins the pterosaurs take flight? Physics-based modelling is helping to solve these mysteries of movement

For Physics World:

Jurassic Park and its sequels are best thought of as monster movies. But they do make dinosaurs look and act like real animals – which, of course, they were. For more than 100 million years, various groups of dinosaur were the largest predators and herbivores on the planet. There were many smaller species too, though we only know about a fraction of them, since fossils of them are rare, and we’re aware of many only through fragments.

Scientists have been able to answer the biggest scientific question posed by Jurassic Park in one of its most tense chase scenes: could a Tyrannosaurus rex outrun a Jeep? (Answer: no.) Knowing the top speed of an apex predator is vital as it tells us what sorts of prey it could catch. To better understand these creatures, scientists also want to know if a Stegosaurus’ fearsome spike-wielding tail could be used as a weapon, and what damage it could do. Another question is how pterosaurs (cousins of the dinosaurs) could evolve to become the largest flying animals.

Answering all of these questions involves understanding what forces and torques these creatures’ skeletons could withstand. [Read the rest at Physics World]

The dinosaur-killing dark matter of DOOM!

[ This blog is dedicated to tracking my most recent publications. Subscribe to the feed to keep up with all the science stories I write! ]

A few weeks ago, several news outlets ran stories based on a press release, in which a researcher claimed that dense clumps of dark matter could be responsible for the extinction of dinosaurs. I found this claim dubious, based on what we know about dark matter. Here’s my response.

Did Dark Matter Doom the Dinosaurs?

From Slate:

he history of life on Earth is marked by occasional mass extinctions, events wiping out huge numbers of species. The most famous of these killed off all the dinosaurs (or at least those that hadn’t evolved into birds) 65 million years ago. But the mass extinction that ended the Permian period 250 million years ago was even more dramatic, killing off 90 percent of all species in an astonishingly short amount of time. As yet, the cause of this devastation is unexplained.

Mass extinctions have happened at least five times. (A sixth great extinction currently in progress, but that’s an anomaly because humans are responsible.) Some researchers have tried to figure out whether they’re periodic, recurring after specific time intervals. If they truly do repeat regularly, maybe there’s a common cause for them. [read more on Slate.com]

My review of Brian Switek’s forthcoming book, My Beloved Brontosaurus, is up at Double X Science!

Suffice to say, these are not the dinosaurs I learned about as a young kid—and in my opinion, they’re much more interesting. Over the last few decades, the basic realization that modern birds are living dinosaurs has grown, and helped us understand their extinct uncles and aunts: the dinosaurs of the distant past. (Many scientists even refer to the classic dinosaurs as the non-avian dinosaurs, meaning these are the ones that aren’t recognizably modern birds.) For example, hollow yet sturdy bones allow modern birds to fly, but they also allowed sauropods to grow into the biggest animals ever to live on land. We also know now, thanks to a number of recent finds, that probably every dinosaur lineage had feathers of some sort. As Switek wrote, “Just think of how cute a fuzzy little Apatosaurus juvenile would be.” I concur. [Read more…]

Dinosaurs belong to all of us

question box from Super Mario BrothersWriter/editor David Manly posed a series of questions to scientists and writers, soliciting short responses on topics of broad interest. Those interviewed were shark researcher David Schiffman, paleontology writer/sauropod snogger Brian Switek, and me. If you want to know who would win an arm-wrestling contest between a human and a Tyrannosaurus, or how we know black holes exist if we can’t see them, this post is for you.

A Manly conversation