The week in review (October 20-26)

Evidently, Nicole "the Noisy Astronomer" Gugliucci did not like it when I quoted Star Wars at her. All I said was "Aren't you a little short for a Stormtrooper?" [Credit: Melanie Mallon]

Evidently, Nicole “the Noisy Astronomer” Gugliucci did not like it when I quoted Star Wars at her. All I said was “Aren’t you a little short for a Stormtrooper?” [Credit: Melanie Mallon]

I had a wonderful time at GeekGirlCon; thanks again to Dr. Rubidium, AKA Nick Fury, for putting together the DIY Science Zone, and to everyone who made it a great event. I have a more formal wrap-up post in the works, but in the meantime, have some science writing.

  • The river of spacetime (Galileo’s Pendulum): As a follow-up to my earlier post, I extended the metaphor of dynamic spacetime. If spacetime is the river, gravity is the current, carrying matter and light along with it.
  • New type of quantum excitation behaves like a solitary particle (Ars Technica): In materials, the relevant entities aren’t particles, but quasiparticlesThese are quantum excitations that have mass, charge, spin, and all that jazz, but those properties depend on the specifics of the material…and of external influences. So, physicists would like to create quasiparticles that are less finicky, and behave more like free, solitary particles. That type of excitation is a leviton, and experimenters created them for the first time, as described in this new paper.
  • Taking Measure: A ‘New’ Most Distant Galaxy (Universe Today): It seems that every week, we see a new “most distant galaxy” announcement. However, this new find is special for two reasons: it’s a rare case where astronomers have measured the distance accurately using the galaxy’s spectrum, and the specific galaxy is producing new stars at a much higher rate than expected. Also, this is my first contribution to Universe Today!
  • For the love of Gauss, please stop (Galileo’s Pendulum): A somewhat ranting post in which I get grumpfy about the over-use and misuse of certain examples from the history of science in popular science writing.
  • What do we call a theory that is no longer viable? (Galileo’s Pendulum): As a follow-up to that previous post, I ponder better ways to think about the history of science, and propose (somewhat seriously) a term to describe theories that were once viable, but are now ruled out by evidence.

The week in review (October 13 – 19)

I’m at GeekGirlCon this weekend, so I’m busy with non-writing activities as part of the DIY Science Zone. Thanks to our Fearless Leader Dr. “Nick Fury” Rubidium for putting our part of the event together!

  • Where Nature Hides the Darkest Mystery of All (Nautilus): Even though there’s no solid barrier, the event horizon of a black hole provides a boundary through which we can’t see or probe. That leads to a troubling idea: will we ever know what’s really inside that event horizon? Is there any way to learn about the interior by indirect measurements?
  • Black hole hair and the dark energy problem (Galileo’s Pendulum): Building off that article, what happens if our standard theory of gravity is modified? That’s not an entirely crazy idea: several modifications to general relativity have been proposed, inspired by inflation (the rapid expansion during the cosmos’ earliest moments) or dark energy. A recent paper examined that idea, and here’s my take.
  • Strongly magnetic pulsar could explain anomalous supernovas (Ars Technica): Some supernovas are particularly bright, especially some from the early Universe. These, known as “pair-instability” supernovas, are the explosion of very massive stars made of nearly pure hydrogen and helium. However, some of these super-luminous supernovas don’t quite fit that profile, including being too close. A new set of observations may show they are actually driven by a magnetar, a highly magnetized pulsar.
  • Gravitational waves show deficit in black hole collisions (Ars Technica): Mergers of supermassive black holes should happen frequently enough to produce a bath of gravitational radiation permeating the cosmos. While that gravitational wave background (GWB) possesses wavelengths too large for ground-based detectors like LIGO, astronomers realized it might be visible in the fluctuations of light from pulsars. However, they didn’t see what they expected, leading to the big question: why not?

Two weeks in review (September 29 – October 12, 2013)

The center of the Milky Way lies at the upper left of this image from the 2MASS survey of galaxies. [Credit: 2MASS/G. Kopan, R. Hurt]

My black holes class and other responsibilities ate my brain the last two weeks, so I forgot to post a “week in review” last week. So, here’s the highlights from the last two weeks. If it’s more heavily weighted toward black holes even than usual, that’s hardly surprising.

  • Of fire and ice and Harlow Shapley (Galileo’s Pendulum): In 1918, a poet named Robert Frost met an astronomer named Harlow Shapley. The result, according to Shapley, was “Fire and Ice”. Most people probably don’t remember who Shapley was anymore, but in his day he was one of the most prominent astronomers, helping to map the galaxy and measuring its size.
  • Portrait of a black hole, part 1 (Galileo’s Pendulum): When trying to understand the curved four-dimensional spacetime of gravity, we have to resort to metaphor and simplified pictures. Here’s my attempt to describe spacetime around a (non-rotating) black hole using a dynamic analogy: a flowing current, against which objects must move.
  • A scientific love affair (Galileo’s Pendulum): Like many (most?) little kids, dinosaurs captured my imagination, sparking me to think about science for the first time. However, black holes, pulsars, and other products of extreme gravity inspired me in a different direction when I was in sixth grade. Here’s a partial story of my love affair with gravity.
  • The 2013 Nobel Prize in physics: the Higgs boson (Galileo’s Pendulum): The 2013 Nobel Prize was awarded this week to François Englert and Peter Higgs for the theoretical prediction of what is now known as the Higgs boson. This post celebrates that award, but also delves into how the Nobel Prize fails. In promoting the “lone (male) genius” view of science and thereby failing to acknowledge contributions by the others who deserve recognition for the Higgs boson, the Nobel Prize does a disservice to that which it seeks to honor. Bonus: what the Nobel Prize has to do with the leg lamp from A Christmas Story.
  • Measuring a superconducting qubit by manipulating its environment (Ars Technica): Now for something completely different! Quantum systems are complicated, involving interactions between the objects we want to study, the environment of those objects, and our measuring apparatus. A new experiment shows a way of measuring an object’s properties indirectly by performing environmental measurements instead. The result is a picture of a superconducting quantum bit (or qubit) as it evolves in time.