Two weeks in review (October 27-November 9)

The Universal Marathon: 13.8 billion years! You run this race whether you like it or not, so might as well enjoy it.

Evidently I forgot to post one of these roundups last week, so here’s two weeks’ worth of writing all at once! Also, I have a new sticker design you can order, for those of you (like me) who don’t willingly run for exercise, but want to feel you’ve accomplished something anyway. At least in a cosmological sense, we all run this marathon we call existence.

  1. Drown your town, drown the world (Galileo’s Pendulum): My colleague Andrew David Thaler asked how much water would be required to flood the whole world to the height of Mount Everest, so I took up the challenge.
  2. Hellish exoplanet has Earth-like density and composition (Ars Technica): It’s difficult to measure both the mass and the size of exoplanets (planets orbiting other stars), because discovery methods are complementary to each other. A new pair of papers described the first exoplanet with a density similar to Earth’s, meaning it probably has a similar composition. However, the planet is hot enough to melt most rocks. Don’t plan your vacation there.
  3. New LUX experiment: No dark matter in this corner (Ars Technica): Researchers operating the Large Underground Xenon (LUX) dark matter detector announced the results of the first three months of operation. They found: nothing. Well, specifically they found nothing where some other detectors might have found a possible dark matter signature.
  4. Ghosts in the detector: why null results are part of science too (Galileo’s Pendulum): To follow up that previous article, here’s why the LUX detector wasn’t a failure, and definitely why we shouldn’t think dark matter doesn’t exist.
  5. A comment on comments, with cats (Galileo’s Pendulum): Comments on websites have always been a point of some debate. Do we have them? How do we moderate them? What constitutes reasonable commenting, and who makes that decision? Because of an ongoing “debate” between a few vocal people about pterosaur flight (of all things) on an old post about gravity, which I simply don’t have time or willingness to moderate, I decided to close down comment threads on older posts. That riled some people up.
  6. So close, yet so far (Galileo’s Pendulum): The closest star to the Solar System is invisible to the unaided eye, but in many ways it’s a more typical star than the Sun — much less the other stars we see in the night sky.
  7. The census of alien worlds (Galileo’s Pendulum): The Kepler observatory’s primary mission is over, but its legacy lives on. Based on Kepler data, scientists have estimated the possible number of Earth-class planets orbiting at habitable distances from Sun-like stars. Here’s my take on that study.
  8. I don’t believe in science (Galileo’s Pendulum): Oftentimes, big ideas in science — the Big Bang model, evolution, climate change — are regarded as optional, matters of belief. Here are some of my musings about science, belief, and what it means to trust science in the face of bad behavior, fraud, and controversy.
  9. Weekly Space Hangout (Universe Today): Yesterday, I participated in the weekly round-up of space and astronomy news, in conversation with other science writers. Much fun was had!

The Solar System boundary and the week in review (September 8-14)

Cthulhu at NASA Wallops, for the LADEE launch last weekend. (I didn't wear the hat the whole time. I'm not that weird.)

Cthulhu at NASA Wallops, for the LADEE launch last weekend. (I didn’t wear the hat the whole time. I’m not that weird.)

‘Twas a busy week!

  • High-resolution observations show how black hole jets churn galactic gas (Ars Technica): One portion of my PhD thesis involved galactic feedback. That’s the process by which jets from black holes at the center of galaxies push material away, potentially affecting star formation and other activity. This article addressed the observation of galactic feedback, showing exactly where the hot jet of plasma from the black hole meets the colder atoms in galactic clouds. Very awesome stuff!
  • Parallel Earth and the Evil Matthew Hypothesis (Double X Science): I don’t know if Star Trek was the original source of the “evil twin from a parallel world” trope, but it’s the most famous. The idea is that there’s a mirror universe to ours, in which things are almost the same, but not quite. I discussed that trope in light of the multiverse, the concept that during rapid expansion right after the Big Bang, the Universe split into a number of disconnected regions that might obey different laws than our own.
  • Do-it-yourself science at GeekGirlCon (Galileo’s Pendulum): We’re still raising money to send a group of us to GeekGirlCon in Seattle next month! We’re willing to embarrass ourselves in public to accomplish this! However, the real purpose is to have hands-on science activities at the con.
  • Status of the book-in-progress (Galileo’s Pendulum): On a more somber note, I have suspended work on my book indefinitely and released my agent. I haven’t completely given up on either the book or getting it published, but the frustrations around the whole process have exhausted me, so it’s time for a break.
  • Cosmic coincidence and a potato eclipse (Double X Science): The Moon is nearly the same size as the Sun in our sky, which has led to all sorts of mystical musings and apocalyptic fears, especially during eclipses. However, that appearance is a coincidence, which we can understand using simple geometry. What’s even more fun to contrast our Moon to Phobos, the larger of Mars’ two moons, which is much smaller than our own but manages to create its own eclipses.
  • Voyager 1 really has left the Solar System…probably (Ars Technica): Sometime last year, the venerable spacecraft Voyager 1 crossed into interstellar space. While there have been a lot of announcements along these lines (I compared the number with Spinal Tap drummers), this time the probe seems to have actually done it. The necessary measurement is the plasma density, which is much higher in interstellar space, but Voyager’s plasma instrument had been knocked out by a solar flare. Researchers pieced together the appropriate data from other instruments. There’s still an anomalous measurement that needs to be accounted for — the magnetic field doesn’t behave as predicted — but I think it’s pretty safe to say that’s an issue for theorists, not ambiguity about Voyager’s position. (See below for a discussion of whether Voyager has actually “left the Solar System” or not.)
  • Mapping the dark matter in the tiniest of galaxies (Galileo’s Pendulum): Dwarf spheroidal galaxies don’t look like galaxies at all. They have so few stars and so little gas or dust, they’re nearly see-through, yet they have as much as 1000 times more dark matter than ordinary matter. (In regular galaxies, dark matter is more like 10 times the amount.) Two astronomers analyzed the motion of stars within dwarf spheroidals to see if they could map the distribution of dark matter, and they found something similar to what is seen in larger galaxies.
  • Finally, I participated in the Weekly Space Hangout, sponsored by Universe Today and CosmoQuest. I joined hosts Fraser Cain and Nicole Gugliucci, along with Amy Shira Teitel, David Dickinson, and Nancy Atkinson to talk about the space and astronomy news from the last week. The whole thing is archived at Google+, or you can watch the video on YouTube.

Where’s the edge of the Solar System?

Returning to Voyager 1, I think stories about its passage into interstellar space fell into two major categories: those saying “Voyager 1 has left the Solar System!” and variations on “Stop saying Voyager 1 has left the Solar System!” Despite what the headline on my story said, the second group of people (which includes writers I respect like Phil Plait and Amy Shira Teitel) is correct: the Solar System includes the Oort Cloud, a diffuse region of icy bodies loosely bound to the Sun by gravity.

A radio image of Voyager 1, as seen by the Very Long Baseline Array (VLBA) and the Green Bank Telescope. Click for a larger image and more information. [Credit: Alexandra Angelich, NRAO/AUI/NSF]

A radio image of Voyager 1, as seen by the Very Long Baseline Array (VLBA) and the Green Bank Telescope. Click for a larger image and more information. [Credit: Alexandra Angelich, NRAO/AUI/NSF]

However, if you want to say Voyager has left the Solar System, I’ll back you up: the boundary between the Oort Cloud and the “rest of the galaxy” isn’t very well defined. Gravity technically extends forever, though it weakens substantially with larger distances. As a result, the Oort Cloud is a fuzzy edge, and one we can’t measure. Is the end of the Solar System the point where the last Oort Cloud body resides?

Now, I agree with the pedants that the Oort Cloud truly does define the end of the Sun’s influence, and therefore is the edge of the Solar System. But the magnetic boundary of the Solar System, which is arguably the more important one from the point of view of astronomy, is defined by the edge of the heliopause, where the solar wind hits interstellar gas. That boundary, while it fluctuates with solar weather, is a much clearer division, and one we could conceivably measure near other stars.

So, I’m a both/and kind of guy in this case. Since there’s no single, sharp boundary between the Solar System and “everything else”, let’s just say there are two edges: one for the Sun’s electromagnetic influence (the heliopause), and one for its gravitational influence (the Oort Cloud). Voyager crossed the first one, but won’t reach the second one for 300 years. Now, can we get back to talking about how awesome Voyager is?

Talking about dark matter in a bar

Next Tuesday (June 4, 2013) I will be speaking at SciencePub RVA, a monthly gathering at The Camel in Richmond, Virginia. The doors open at 6 PM, and my talk starts at 7 PM. The event is free, but we’d love it if you would register, so we have an idea of the crowd size. (Also, tip your servers. Seriously. They’re your friends.)

Mining for dark matter

Dark matter makes up about 80% of all the mass in the Universe, but what exactly is it? To see how scientists are trying to answer this question, we’ll examine the evidence for dark matter in the Universe, from the early days of the cosmos to the structure of galaxies. Then, we’ll travel a half-mile underground to the Soudan laboratory in northern Minnesota, where one experiment works to detect dark matter particles directly.

OK, I might be feeling a little cranky about this, but my article for Ars Technica is a little more measured. I’ll have a longer analysis for Galileo’s Pendulum tomorrow, for those who want it. The short version: the Alpha Magnetic Spectrometer (AMS-02) is a particle detector installed on the International Space Station. For several months, the lead investigator has been hinting that AMS-02 detected the signature of dark matter annihilation: collisions between dark matter particles producing an excess of positrons. However, the actual research paper was rather short on dark matter, however interesting the AMS-02 results really were.

The Alpha Magnetic Spectrometer (AMS-02) is a particle detector based on the International Space Station, designed for looking at a variety of particles from many sources, among them dark matter collisions. Recently, the AMS-02 research team announced the results of its first 18 months of data collection. These results are frustratingly ambiguous: while AMS-02 found an excess of certain type of particle expected from some models of dark matter annihilation, this excess didn’t bear the hallmarks predicted for a dark matter signature. So, something interesting is going on in the AMS-02 data, but the chances of dark matter being the cause seem a bit low. [Read more…]

Update: I published my rant over at Galileo’s Pendulum, explaining exactly why I’m grumpish about the way these results were announced and characterized in much of the media.

Much ado about nothing in today’s dark matter non-announcement

The cosmic pie, via Planck. [Credit: ESA/Planck Collaboration]

The cosmic pie, via Planck. [Credit: ESA/Planck Collaboration]

For cosmology-lovers like me, yesterday was a full, busy day. The Planck telescope released its first full set of data, refining the estimates of the age of the Universe and its contents. I wrote two big pieces, one for Ars Technica and one for Galileo’s Pendulum.

  • First Planck results: the Universe is still weird and interesting [Ars Technica]. “By comparing theoretical models to the real CMB, cosmologists determined that dark energy—the mysterious substance driving cosmic acceleration—comprises 68.3 percent of the energy content of the Universe, down slightly from earlier estimates of 72.8 percent. Similarly, dark matter’s contribution was boosted from 22.7 percent to 26.8 percent, while ordinary matter’s share went from 4.5 percent to 4.9 percent.”
  • Planck results: our weird and wonderful Universe [Galileo’s Pendulum].  “The big news today is that our Universe is a little older than we thought, has a little more matter in it, and is every bit as strange as we’ve come to expect. Some numbers got shifted around a bit, but things are pretty much what we cosmology-watchers expected. It’s not a bad thing, in my opinion. After all, we still don’t know what dark matter is, we still don’t know what dark energy is, and we still don’t understand inflation completely. Adding weirdness to weirdness is probably more than our poor brains could take right now.”

Charlie Petit at the Knight Journalism Tracker also has a great round-up of articles on Planck, for those who want a more mainstream approach than my “techy” one (to use Petit’s term).

Planck: news from the infant Universe

Forgive me if I get excited for a moment, but…today marks my first contribution to BBC Future! The feature I contributed is part of the “Will we ever?” series, in which science writers ask some big questions about what research may or may not be able to answer in the future. My article pondered whether we’ll ever be able to identify dark matter: the mysterious substance that comprises more than 80% of the mass of the Universe. (The link for my UK readers is here.)

Right now, a far easier question to answer is what dark matter isn’t. First of all, the name is misleading: dark matter isn’t “dark” in any usual sense of the word. “Invisible matter” is a better term: light shining on dark matter from any source passes right through without being absorbed or scattered, regardless of the type of light. This means dark matter can’t be made of atoms or of their constituent parts; that is, electrons, protons and neutrons.

In fact, dark matter doesn’t correspond to anything in the Standard Model, the best explanation we have for how the universe works. [Read more…]

Will we ever know the identity of dark matter?

“A” is for axion

I just started a new series: the Alphabet of Cosmology! Go check out the first entry: A is for Axion.

Galileo's Pendulum

Wot’s all this, now?

Today I begin a new feature, which I will try to update once a week: the Alphabet of Cosmology. In these entries, I’ll highlight a  concept, experiment, or observation in cosmology—the study of the history, contents, and evolution of the Universe—that may not be as familiar to non-specialists.

(I stole borrowed this idea from Brian Switek, whose Dinosaur Alphabet series is a great way to learn about dinosaur species that aren’t the usual famous ones covered in books or on TV shows.)

The dark matter problem in boxer brief

About 80% of the mass in the Universe isn’t the same stuff familiar from daily life. The name we give our ignorance is dark matter, and we generally assume it to be a particle of some kind. We see its effects in the motion of stars and gas in galaxies, in the way galaxies cluster…

View original post 1,003 more words